Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 473(9): 1165-78, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936970

RESUMO

The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types.


Assuntos
Processamento Alternativo/fisiologia , Carboxiliases/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Complexo Cetoglutarato Desidrogenase/biossíntese , Animais , Carboxiliases/genética , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Especificidade de Órgãos/fisiologia , Ratos , Ratos Wistar
2.
Sci Rep ; 6: 21759, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26899474

RESUMO

Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.


Assuntos
Arginina/química , Canal de Potássio ERG1/química , Lisina/química , Simulação de Dinâmica Molecular , Água/química , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Guanidina/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Isoformas de Proteínas/química , Eletricidade Estática , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
3.
Biochim Biophys Acta ; 1857(5): 493-502, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26556173

RESUMO

Central to the design of an efficient de novo enzyme is a robust yet mutable protein scaffold. The maquette approach to protein design offers precisely this, employing simple four-α-helix bundle scaffolds devoid of evolutionary complexity and with proven tolerance towards iterative protein engineering. We recently described the design of C2, a de novo designed c-type cytochrome maquette that undergoes post-translational modification in E. coli to covalently graft heme onto the protein backbone in vivo. This de novo cytochrome is capable of reversible oxygen binding, an obligate step in the catalytic cycle of many oxygen-activating oxidoreductases. Here we demonstrate the flexibility of both the maquette platform and the post-translational machinery of E. coli by creating a suite of functional de novo designed c-type cytochromes. We explore the engineering tolerances of the maquette by selecting alternative binding sites for heme C attachment and creating di-heme maquettes either by appending an additional heme C binding motif to the maquette scaffold or by binding heme B through simple bis-histidine ligation to a second binding site. The new designs retain the essential properties of the parent design but with significant improvements in structural stability. Molecular dynamics simulations aid the rationalization of these functional improvements while providing insight into the rules for engineering heme C binding sites in future iterations. This versatile, functional suite of de novo c-type cytochromes shows significant promise in providing robust platforms for the future engineering of de novo oxygen-activating oxidoreductases. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electron transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Grupo dos Citocromos c/química , Oxirredutases/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Sítios de Ligação , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Escherichia coli , Heme/análogos & derivados , Heme/química , Heme/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredutases/genética , Oxirredutases/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência de Aminoácidos
4.
Nat Commun ; 6: 7405, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26080734

RESUMO

Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.


Assuntos
Cartilagem Hialina , Células-Tronco Mesenquimais/efeitos dos fármacos , Mioglobina/farmacologia , Oxigênio/administração & dosagem , Engenharia Tecidual/métodos , Escherichia coli , Glicolatos/química , Humanos , Mioglobina/química
5.
Curr Opin Chem Biol ; 19: 90-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607598

RESUMO

Manmade protein design is founded on the concept that a protein with minimal evolutionary complexity is a viable scaffold for incorporating simple engineering elements responsible for function in natural proteins and enzymes. There has been significant, recent success both in fabricating manmade protein components that exhibit functional elements inspired by natural oxidoreductases, and the functional integration of this componentry with natural proteins and biochemical pathways. Here we discuss the state of the art in de novo oxidoreductase construction, focusing on the diverse manmade componentry available and how their functions might be interfaced and integrated within living organisms.


Assuntos
Oxirredutases/metabolismo , Biocatálise , Transporte Biológico , Citocromos/química , Citocromos/metabolismo , Humanos , Oxirredutases/química , Ligação Proteica , Especificidade por Substrato
6.
Chem Sci ; 5(2): 507-514, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24634717

RESUMO

The successful use of man-made proteins to advance synthetic biology requires both the fabrication of functional artificial proteins in a living environment, and the ability of these proteins to interact productively with other proteins and substrates in that environment. Proteins made by the maquette method integrate sophisticated oxidoreductase function into evolutionarily naive, non-computationally designed protein constructs with sequences that are entirely unrelated to any natural protein. Nevertheless, we show here that we can efficiently interface with the natural cellular machinery that covalently incorporates heme into natural cytochromes c to produce in vivo an artificial c-type cytochrome maquette. Furthermore, this c-type cytochrome maquette is designed with a displaceable histidine heme ligand that opens to allow functional oxygen binding, the primary event in more sophisticated functions ranging from oxygen storage and transport to catalytic hydroxylation. To exploit the range of functions that comes from the freedom to bind a variety of redox cofactors within a single maquette framework, this c-type cytochrome maquette is designed with a second, non-heme C, tetrapyrrole binding site, enabling the construction of an elementary electron transport chain, and when the heme C iron is replaced with zinc to create a Zn porphyrin, a light-activatable artificial redox protein. The work we describe here represents a major advance in de novo protein design, offering a robust platform for new c-type heme based oxidoreductase designs and an equally important proof-of-principle that cofactor-equipped man-made proteins can be expressed in living cells, paving the way for constructing functionally useful man-made proteins in vivo.

7.
Biochem J ; 459(2): 369-81, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24495017

RESUMO

The regulation of the 2-oxoglutarate dehydrogenase complex is central to intramitochondrial energy metabolism. In the present study, the active full-length E1 subunit of the human complex has been expressed and shown to be regulated by Ca2+, adenine nucleotides and NADH, with NADH exerting a major influence on the K0.5 value for Ca2+. We investigated two potential Ca2+-binding sites on E1, which we term site 1 (D114ADLD) and site 2 (E139SDLD). Comparison of sequences from vertebrates with those from Ca2+-insensitive non-vertebrate complexes suggest that site 1 may be the more important. Consistent with this view, a mutated form of E1, D114A, shows a 6-fold decrease in sensitivity for Ca2+, whereas variant ∆site1 (in which the sequence of site 1 is replaced by A114AALA) exhibits an almost complete loss of Ca2+ activation. Variant ∆site2 (in which the sequence is replaced with A139SALA) shows no measurable change in Ca2+ sensitivity. We conclude that site 1, but not site 2, forms part of a regulatory Ca2+-binding site, which is distinct from other previously described Ca2+-binding sites.


Assuntos
Cálcio/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Cinética , Dados de Sequência Molecular , Estrutura Molecular , Miocárdio/enzimologia , Ligação Proteica , Subunidades Proteicas , Especificidade da Espécie , Suínos
8.
Dalton Trans ; 42(9): 3136-50, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23076271

RESUMO

Natural oxygenases catalyse the insertion of oxygen into an impressive array of organic substrates with exquisite efficiency, specificity and power unparalleled by current biomimetic catalysts. However, their true potential to provide tailor-made oxygenation catalysts remains largely untapped, perhaps a consequence of the evolutionary complexity imprinted into their three-dimensional structures through millennia of exposure to parallel selective pressures. In this perspective we describe how we may take inspiration from natural enzymes to design manmade oxygenase enzymes free from such complexity. We explore the differing chemistries accessed by natural oxygenases and outline a stepwise methodology whereby functional elements key to oxygenase catalysis are assembled within artificially designed protein scaffolds.


Assuntos
Materiais Biomiméticos/metabolismo , Desenho de Fármacos , Oxigênio/metabolismo , Oxigenases/metabolismo , Engenharia de Proteínas/métodos , Materiais Biomiméticos/química , Oxigenases/química
9.
Biochem Soc Trans ; 40(3): 561-6, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22616867

RESUMO

The study of natural enzymes is complicated by the fact that only the most recent evolutionary progression can be observed. In particular, natural oxidoreductases stand out as profoundly complex proteins in which the molecular roots of function, structure and biological integration are collectively intertwined and individually obscured. In the present paper, we describe our experimental approach that removes many of these often bewildering complexities to identify in simple terms the necessary and sufficient requirements for oxidoreductase function. Ours is a synthetic biology approach that focuses on from-scratch construction of protein maquettes designed principally to promote or suppress biologically relevant oxidations and reductions. The approach avoids mimicry and divorces the commonly made and almost certainly false ascription of atomistically detailed functionally unique roles to a particular protein primary sequence, to gain a new freedom to explore protein-based enzyme function. Maquette design and construction methods make use of iterative steps, retraceable when necessary, to successfully develop a protein family of sturdy and versatile single-chain three- and four-α-helical structural platforms readily expressible in bacteria. Internally, they prove malleable enough to incorporate in prescribed positions most natural redox cofactors and many more simplified synthetic analogues. External polarity, charge-patterning and chemical linkers direct maquettes to functional assembly in membranes, on nanostructured titania, and to organize on selected planar surfaces and materials. These protein maquettes engage in light harvesting and energy transfer, in photochemical charge separation and electron transfer, in stable dioxygen binding and in simple oxidative chemistry that is the basis of multi-electron oxidative and reductive catalysis.


Assuntos
Oxirredutases/síntese química , Engenharia de Proteínas/métodos , Proteínas Recombinantes/síntese química , Biologia Sintética/métodos , Oxirredução , Oxirredutases/química , Proteínas Recombinantes/química
10.
ACS Synth Biol ; 1(6): 240-50, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23651206

RESUMO

Protein engineering, chemical biology, and synthetic biology would benefit from toolkits of peptide and protein components that could be exchanged reliably between systems while maintaining their structural and functional integrity. Ideally, such components should be highly defined and predictable in all respects of sequence, structure, stability, interactions, and function. To establish one such toolkit, here we present a basis set of de novo designed α-helical coiled-coil peptides that adopt defined and well-characterized parallel dimeric, trimeric, and tetrameric states. The designs are based on sequence-to-structure relationships both from the literature and analysis of a database of known coiled-coil X-ray crystal structures. These give foreground sequences to specify the targeted oligomer state. A key feature of the design process is that sequence positions outside of these sites are considered non-essential for structural specificity; as such, they are referred to as the background, are kept non-descript, and are available for mutation as required later. Synthetic peptides were characterized in solution by circular-dichroism spectroscopy and analytical ultracentrifugation, and their structures were determined by X-ray crystallography. Intriguingly, a hitherto widely used empirical rule-of-thumb for coiled-coil dimer specification does not hold in the designed system. However, the desired oligomeric state is achieved by database-informed redesign of that particular foreground and confirmed experimentally. We envisage that the basis set will be of use in directing and controlling protein assembly, with potential applications in chemical and synthetic biology. To help with such endeavors, we introduce Pcomp, an on-line registry of peptide components for protein-design and synthetic-biology applications.


Assuntos
Peptídeos/química , Sequência de Aminoácidos , Fenômenos Biofísicos , Desenho Assistido por Computador , Cristalografia por Raios X , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Biologia Sintética
11.
Bioinformatics ; 27(14): 1908-14, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21576179

RESUMO

MOTIVATION: The coiled coil is a ubiquitous α-helical protein structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, coiled coils are quite straightforward and readily recognized via the conspicuous heptad repeats of hydrophobic and polar residues. However, structurally they are more complicated, existing in a range of oligomer states and topologies. Here, we address the issue of predicting coiled-coil oligomeric state from protein sequence. RESULTS: The predominant coiled-coil oligomer states in Nature are parallel dimers and trimers. Here, we improve and retrain the first-published algorithm, SCORER, that distinguishes these states, and test it against the current standard, MultiCoil. The SCORER algorithm has been revised in two key respects: first, the statistical basis for SCORER is improved markedly. Second, the training set for SCORER has been expanded and updated to include only structurally validated coiled coils. The result is a much-improved oligomer state predictor that outperforms MultiCoil, particularly in assigning oligomer state to short coiled coils, and those that are diverse from the training set. AVAILABILITY: SCORER 2.0 is available via a web interface at http://coiledcoils.chm.bris.ac.uk/Scorer. Source code, training sets and Supporting Information can be downloaded from the same site.


Assuntos
Algoritmos , Análise de Sequência de Proteína/métodos , Software , Motivos de Aminoácidos , Internet , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas/química
12.
Chem Commun (Camb) ; 47(1): 412-4, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20852793

RESUMO

Solution-phase spectroscopy and mass spectrometry are used to probe interactions between divalent metal ions and a synthetic Cys(2)His(2) zinc-finger peptide (vCP1). Both methods provide the same order of binding affinity, zinc ≥ cobalt ≫ copper ≫ calcium. Collision-cross-section measurements show that both apo and holo forms are compact. This is corroborated by molecular-dynamics simulations.


Assuntos
Cálcio/química , Cobalto/química , Cobre/química , Peptídeos/química , Dedos de Zinco , Zinco/química , Cisteína/química , Gases/química , Histidina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Soluções
13.
J Mol Biol ; 403(3): 480-93, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20813113

RESUMO

Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils that fall into known superfamilies: hundreds of hidden Markov models representing coiled-coil-containing domain families. Using whole domains gives the advantage that sequences flanking the coiled coils help. SpiriCoil performs at least as well as existing methods at detecting coiled coils and significantly advances the state of the art for oligomer state prediction. SpiriCoil has been run on over 16 million sequences, including all completely sequenced genomes (more than 1200), and a resulting Web interface supplies data downloads, alignments, scores, oligomeric state classifications, three-dimensional homology models and visualisation. This has allowed, for the first time, a genomewide analysis of coiled-coil evolution. We found that coiled coils have arisen independently de novo well over a hundred times, and these are observed in 16 different oligomeric states. Coiled coils in almost all oligomeric states were present in the last universal common ancestor of life. The vast majority of occasions that individual coiled coils have arisen de novo were before the last universal common ancestor of life; we do, however, observe scattered instances throughout subsequent evolutionary history, mostly in the formation of the eukaryote superkingdom. Coiled coils do not change their oligomeric state over evolution and did not evolve from the rearrangement of existing helices in proteins; coiled coils were forged in unison with the fold of the whole protein.


Assuntos
Evolução Molecular , Genoma , Proteínas/química , Software , Biologia Computacional , Bases de Dados como Assunto , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas/genética , Proteínas/metabolismo
14.
Faraday Discuss ; 143: 305-17; discussion 359-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20334109

RESUMO

The rational design of peptides that fold to form discrete nanoscale objects, and/ or self-assemble into nanostructured materials is an exciting challenge. Such efforts test and extend our understanding of sequence-to-structure relationships in proteins, and potentially provide materials for applications in bionanotechnology. Over the past decade or so, rules for the folding and assembly of one particular protein-structure motif--the alpha-helical coiled coil have advanced sufficiently to allow the confident design of novel peptides that fold to prescribed structures. Coiled coils are based on interacting alpha-helices, and guide and cement many protein-protein interactions in nature. As such, they present excellent starting points for building complex objects and materials that span the nano-to-micron scales from the bottom up. Along with others, we have translated and extended our understanding of coiled-coil folding and assembly to develop novel peptide-based biomaterials. Herein, we outline briefly the rules for the folding and assembly of coiled-coil motifs, and describe how we have used them in de novo design of discrete nanoscale objects and soft synthetic biomaterials. Moreover, we describe how the approach can be extended to other small, independently folded protein motifs--such as zinc fingers and EF-hands--that could be incorporated into more complex, multi-component synthetic systems and new hybrid and responsive biomaterials.


Assuntos
Materiais Biomiméticos/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Peptídeos/química , Simulação por Computador , Engenharia Genética/métodos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...